Архитектура системы баз данных - Мир ПК
Fruitsekta.ru

Мир ПК
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Архитектура системы баз данных

Архитектура системы баз данных

Главная » Все дисциплины » Информатика » Архитектура системы баз данных

Архитектура системы баз данных. Под архитектурой системы понимают совокупность ее основных функциональных компонентов, а также средств обеспечения их взаимодействия друг с другом пользователями и системным персоналом. Одно из наиболее важных функций систем баз данных, оказавших решающее влияние на формирование сложившегося в наши дни подхода к архитектуре является обеспечение возможностей абстракции данных. Абстракции данных, предоставляемые системой служат средством поддержки независимости способ ведения БД различными группами пользователей (это свойство системы называется независимостью данных). В системах обычно имеют дело с уровнями абстракции и часто эти уровни выстраиваются в некоторую иерархию. Функциональны компонент системы, механизмы которого служат для поддержки некоторого уровня абстракции называется архитектурным уровнем. В результате простейшего анализа в системе можно выделить 2 основных уровня абстракции: логический и физический. Понятно, что введение каждого дополнительного уровня существенно усложняет реализации и эксплуатацию системы и снижает ее производительность, но часто дополнительные уровни необходимы что бы обеспечить:
1. адекватные способы видения системы для различных групп персонала
2. создать инструментарий, удовлетворяющий потребностям пользователей
3. представить систему в привычных для конкретной группы пользователей терминов
4. изменять некоторые характеристики системы, не затрагивая других.

Любой архитектурный уровень располагает внутренними и (возможно, внешними интерфейсами). Интерфейс называется внутренним, если он обеспечивает взаимодействие механизмов данного уровня с другими системными компонентами. Интерфейс называется внешним, если он обеспечивает взаимодействие механизмов данного уровня с пользователями и системным персоналом. Архитектурный уровень называется управляемый (неуправляемый), если он располагает (не располагает) внешним интерфейсом. Концепция многоуровневой архитектуры служит основой современной технологии создания БД. Первой научной работой, содержащей идеи многоуровневой архитектуры считается опубликованный в 1975 году отчет рабочей группы по базе данных комитета по планированию стандартов американского национально института стандартов. В отчете была предложена следующая обобщенная трехуровневая модель архитектуры.

Внешняя модель описывается с помощью внешней схемы. Одни и теже данные могут интересовать с совершенно разных точек зрения. Например, завхоза данные о стульях интересуют с точки зрениях их исправности, а бухгалтера с точки зрениях стоимости. Соответственно различные точки зрения на данные порождают различные языки и внешние модели. 1 язык может «обслуживать несколько моделей» и одной модели может соответствовать несколько языков, поэтому на схеме предметных областей не столько же, сколько внешних моделей.

Концептуальный уровень служит для поддержки единого взгляда на единую базу данных и общего для всех его приложений. Концептуальная схема описывает совокупность всех записей. Третий уровень – внутренний (физический), его механизмы служат для поддержки представления о БД в среде хранения. Это единственны архитектурный уровень, в котором БД представлена в полностью материализованном виде. Отображение концепутально-внутреннее определяет соответствие между моделью данных и хранимой базой данных, т.е. указывает как концептуальные записи и поля отображаются в их реальной копии. Если структура хранения БД изменится, то отображении концепутально-внутреннее должно измениться так, что концептуальная схема оставалась неизменной (это ответственность администратора). Отображение внешнее концептуальное определяет соответствие между конкретной внешней моделью и моделью данных, различные внешние модели могут и пересекаться.

Типичная алгоритм управления в управлениях данной схемы:
1. Пользователь выдает запрос на доступ, используя конкретный подъязык данных.
2. СУБД воспринимает запрос и интерпретирует его
3. СУБД обследует по очереди внешнюю схему, отображение внешне-концепутальное, концепутальную схему, отображение концептуально-внутреннее и определяет структуру хранения
4. СУБД выполняет необходимые операции над хранимой БД

Построение БД по этой схеме, предполагает, что интерфейс пользователя является границей, за которой пользователь ничего не видит. В частности одним из признаков хорошей базы данных написанной в АКСЦЕСС является то, что все свои задачи пользователь решает только через формы и не обращается к конструкторам.

Архитектура БД. Модели данных, используемые на различных этапах проектирования БД.

Основной целью любой СУБД является возможность предложить обычному пользователю базы данных абстрактное представление данных, скрыв от пользователя особенности хранения и управления ими. Поскольку база данных, как правило, разрабатывается как общий ресурс для большого количества пользователей, то каждому пользователю может потребоваться своё, отличное от других пользователей представление о данных, хранимых в БД. Это вызвано следующими причинами:
— каждый пользователь иметь право обращаться к общим данным, используя своё представление о них;
— взаимодействие пользователя с БД не должно зависеть от особенностей её физической организации;
— администратор базы данных (АБД) должен иметь возможность изменять структуру и формат данных, не оказывая влияния на пользовательские представления;
— внутренняя структура БД не должна зависеть от таких изменений физических аспектов хранения информации, как переключение на новое устройство хранения;
— АБД должен иметь возможность изменять концептуальную или глобальную структуру данных без какого—либо влияния на всех пользователей.
Для удовлетворения этих потребностей архитектура большинства современных коммерческих СУБД, существующих на рынке программного обеспечения, в той или иной мере, строится на базе так называемой архитектуры ANSI—SPARC. Название произошло по названию комитета планирования стандартов и норм (Standards Planning and Requirements Committee SPARC) национального института стандартизации (American National Standard Institute— ANSI) США. Комитет признал необходимость использования трехуровневого подхода к организации БД. Этот подход отделяет пользовательские представления базы данных от её физического представления посредством создания независимого уровня, изолирующего программы от особенностей представления данных на низком уровне.
Архитектура БД представлена на рисунке 1.
Внешний уровень – это индивидуальное представление БД с точки зрения отдельного пользователей. Пользователи могут быть разные, с разным уровнем подготовки. Каждый пользователь представляет данные в соответствии с формами различных документов, присущих данной предметной области. При этом одни и те же данные могут иметь различную форму представления — формат (тип), длину. Например, сведения о зарплате – их можно увидеть в виде итоговой суммы в записи ведомости, либо в виде перечня составляющих – различных начислений и удержаний.

ПП1 – представление 1—го пользователя, ППк – представление к—того пользователя

Рисунок 1 — Трехуровневая архитектура БД

Некоторые представления могут включать производные или вычисляемые данные, которые не хранятся в БД, а создаются по мере необходимости пользователя.
Индивидуальное внешнее представление называют подсхемой.
Концептуальный уровень отображает обобщенное представление пользователей. Это промежуточный уровень в трехуровневой архитектуре БД, представляющий данные такими, какими они есть на самом деле, а не такими, какими их вынужден видеть пользователь в рамках какого—то инструментального средства или на формах приложений. Концептуальный уровень поддерживает каждое внешнее представление, однако не содержит сведений о методах хранения данных. Этот уровень интересен администратору БД и может быть представлен концептуальными схемами.
Внутренний уровень на языке определения данных (ЯОД) выбранной СУБД представляет, в каком виде информация хранится в БД, описывает структуры объектов БД. Внутреннее представление не связано с физическим уровнем, так как в нем не рассматривается организация физических записей (блоков и страниц памяти), физические области хранения.
Необходимо заметить, что описание уровней архитектуры БД можно представить в виде некоторого технического описания (бумажном или электронном), разработанного с помощью различных средств и правил.

В соответствии с архитектурой БД, существуют несколько внешних схем или подсхем, каждая из которых соответствует разным представлениям данных, одна концептуальная схема БД и одна внутренняя схема БД. Каждая внешняя схема связана с концептуальной с помощью внешне концептуального отображения. Концептуальная схема связана с внутренней посредством концептуально внутреннего отображения. Схемы и отображения создаются администратором БД средствами СУБД.

Основным назначением трехуровневой архитектуры БД является обеспечение независимости описаний базы данных (схем БД), получаемых на различных уровнях, следовательно, независимость прикладных программ от данных, что является одним из основных достоинств базы данных.

Различают логическую и физическую независимость данных.

Логическая независимость данных поддерживает защищенность внешних схем от изменений, вносимых на концептуальном уровне. Так, например, при функциональном развитии АИС проводится дообследование предметной области и в концептуальную схему добавляется описание новых данных предметной области. При этом некоторые внешние схемы даже не замечают этих изменений, часть пользователей работает с БД в прежнем виде.

Физическая независимость поддерживает защищенность концептуальной схемы от изменений, вносимых на физическом уровне. Например, добавление индексов, создание триггеров не требуют внесения изменений в концептуальную схему. Также, возможен перевод физической модели БД на ЯОД другой СУБД без внесения изменений во внешние схемы. Пользователь сможет заметить только увеличение производительности системы.
Для того чтобы создать БД необходимо осуществить проектирование схем каждого уровня архитектуры БД.

Читать еще:  3 принципа архитектуры

Модели данных

Одним из важнейших моментов в процессе проектирования БД является понимание концепций, лежащих в основе моделей данных, используемых как в качестве инструмента проектирования, так и в качестве результата проектирования. В сложившейся терминологии БД и инструменты проектирования, и его результаты рассматриваются как модели. Необходимо различать назначение каждой используемой в процессе проектирования модели данных.

В современной трактовке термин «модель данных» обозначает инструмент моделирования. Модель базы данных (схема данных) или модель предметной области являются результатами моделирования.

Модель данных это интегрированный набор понятий для описания данных, связей между ними и ограничений, накладываемых на данные на предприятии.

Для реализации успешного проектирования БД необходимо для каждой модели – инструмента знать три её основных компонента:
— набор правил, определяющих структуру данных;
— определение типов допустимых операций с данными;
— набор ограничений поддержки целостности данных.

Исходя из трехуровневой архитектуры БД, различают три, связанных между собой, модели данных, получаемых в результате проектирования и отображающие результаты проектирования.
1. Внешняя модель данных, отображает обобщенное представление всех пользователей. Эту модель называют описанием предметной области, формируемым на естественном языке. Представить внешнюю модель можно как в формализованном (схемы, рисунки, таблицы), так и в неформализованном (словесное описание на языке проектировщиков) виде.
2. Концептуальная модель. Она может быть выражена в виде диаграммы, схемы, рисунка, отображающего обобщенное логическое представление информации предметной области (концептуальная информационно логическая модель предметной области) или в виде рисунка, схемы, отображающего обобщенное логическое представление данных (концептуальная логическая модель данных), не зависимое от выбранной СУБД.
3. Внутренняя модель. Является результатом отображения концептуальной модели средствами языка определения данных выбранной СУБД.

В литературе по БД предложено и опубликовано достаточно много различных моделей данных, используемых при проектировании БД как инструментальное средство. Модели, отображающие уровни архитектуры БД, строятся по правилам этих моделей.

Модели данных, как инструменты, делятся на 3 основные категории:

1. Объектные модели данных. В этих моделях используются такие понятия как: классы объектов (типы сущностей), объекты (экземпляры сущностей), свойства классов объектов (атрибуты сущностей), связи между классами объектов. В скобках приведена исторически ранняя терминология, используемая в теории баз данных.
Среди объектных моделей выделяют наиболее общие типы:
— семантические модели. Их назначение – обеспечение возможности выражения семантики (смыла) предметной области. Это, например, модели типа «сущность—связь» (ER—модели — Entity Relationship model), отображающие семантику предметной области в виде ER—диаграмм;
— функциональные модели, дающие представление о функциях автоматизируемого предприятия, о распределении ответственности за их выполнение. Результаты использования функциональных моделей могут быть представлены в виде диаграмм бизнес—функций, диаграмм потоков данных;
—объектно—ориентированные модели. Эти модели расширяет определение класса объектов (сущности) предметной области с целью включения в определение не только свойств, описывающих состояние объекта, но и действий, которые с ним связаны, т.е. его поведение. Это, например, модели, основанные на использовании языка UML (Unified Modeling Language — унифицированного языка моделирования). Описание предметной области получают в виде различных диаграмм — диаграмм вариантов использования, диаграмм деятельности, диаграмм классов.
В настоящее время для проектирования БД, получения концептуальной инфологической модели предметной области, широко используются семантические модели «сущность—связь».
2. Модели на основе физических записей. Такие модели позволяют описывать логическую структуру БД в виде записей, фиксированного формата. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фиксированную длину. Существует три основных типа логических моделей данных на основе записей:
— иерархическая (hierarchical data model);
— сетевая (network data model);
— реляционная (relational data model).
3. Физические модели данных. Модель содержит всю информацию, необходимую для реализации конкретной БД в среде выбранной (целевой) СУБД. В физической модели в виде описания содержится информация обо всех объектах БД. В описании объектов БД определяется физический формат данных, реализуются ограничения предметной области, бизнес—логика автоматизируемого предприятия, уровни доступа пользователей. Описание создается на языке определения данных (ЯОД) выбранной (целевой) СУБД. В состав ЯОД входят операторы, позволяющие создать или удалить объект БД, модифицировать его структуру. Физическая модель данных не затрагивает вопросы физического размещения данных на машинных носителях, в настоящее время это максимально реализуется средствами СУБД.
Модели первых двух групп используются для формирования концептуального уровня архитектуры БД, третьей – для описания БД на внутреннем уровне.
Модель данных, полученная в результате проектирования, должна представлять автоматизируемое предприятие в таком виде, который позволит проектировщикам и пользователям БД обмениваться конкретными недвусмысленными мнениями.

Оптимальная модель данных, полученная в результате проектирования, должна удовлетворять следующим критериям:
— обладать структурной достоверностью – способы определения информации в модели данных должны соответствовать организации информации на рассматриваемом предприятии;
— быть относительно простотой, легко понимаемой, как профессионалами в области разработки БД, так и обычными пользователями;
— обладать выразительностью — представлять отличия между разными типами данных, связями и ограничениями;
— обладать отсутствием избыточности, любая часть данных должна быть представлена только один раз;
— обладать возможностью совместного использования, не принадлежать к какому—то особому приложению или технологии;
— быть целостной, согласованной со способами использования и управления информацией внутри предприятия;
— обладать расширяемостью, эволюционировать с целью включения новых требований с минимальным влиянием на уже существующих пользователей;
— иметь возможность представления в виде диаграмм.

В таблице 1 представлены модель, которые будем использовать при проектировании базы данных

Таблица 1 — Модели данных

Модель данных, как инструмент, используемый для формирования схемы БД

Функциональные модели, модели на основе языка UML.

Основные понятия и определения

Современные авторы часто употребляют термины » банк данных » и » база данных » как синонимы, однако в общеотраслевых руководящих материалах по созданию банков данных Государственного комитета по науке и технике (ГКНТ), изданных в 1982 г., эти понятия различаются. Там приводятся следующие определения банка данных, базы данных и СУБД :

Банк данных (БнД) — это система специальным образом организованных данных — баз данных, программных, технических, языковых, организационно-методических средств, предназначенных для обеспечения централизованного накопления и коллективного многоцелевого использования данных.

База данных ( БД ) — именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области .

Система управления базами данных ( СУБД ) — совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Сухой канцелярский язык труден для восприятия, но эти определения четко разграничивают назначение всех трех базовых понятий, и мы можем принять их за основу.

Программы, с помощью которых пользователи работают с базой данных, называются приложениями. В общем случае с одной базой данных могут работать множество различных приложений. Например, если база данных моделирует некоторое предприятие, то для работы с ней может быть создано приложение , которое обслуживает подсистему учета кадров, другое приложение может быть посвящено работе подсистемы расчета заработной платы сотрудников, третье приложение работает как подсистемы складского учета, четвертое приложение посвящено планированию производственного процесса. При рассмотрении приложений, работающих с одной базой данных, предполагается, что они могут работать параллельно и независимо друг от друга, и именно СУБД призвана обеспечить работу множества приложений с единой базой данных таким образом, чтобы каждое из них выполнялось корректно, но учитывало все изменения в базе данных, вносимые другими приложениями.

Архитектура базы данных. Физическая и логическая независимость

Терминология в СУБД , да и сами термины » база данных » и » банк данных » частично заимствованы из финансовой деятельности . Это заимствование — не случайно и объясняется тем, что работа с информацией и работа с денежными массами во многом схожи, поскольку и там и там отсутствует персонификация объекта обработки: две банкноты достоинством в сто рублей столь же неотличимы и взаимозаменяемы, как два одинаковых байта (естественно, за исключением серийных номеров). Вы можете положить деньги на некоторый счет и предоставить возможность вашим родственникам или коллегам использовать их для иных целей. Вы можете поручить банку оплачивать ваши расходы с вашего счета или получить их наличными в другом банке, и это будут уже другие денежные купюры, но их ценность будет эквивалентна той, которую вы имели, когда клали их на ваш счет.

В процессе научных исследований, посвященных тому, как именно должна быть устроена СУБД , предлагались различные способы реализации. Самым жизнеспособным из них оказалась предложенная американским комитетом по стандартизации ANSI (American National Standards Institute) трехуровневая система организации БД , изображенная на рис. 2.1:

  1. Уровень внешних моделей — самый верхний уровень, где каждая модель имеет свое «видение» данных. Этот уровень определяет точку зрения на БД отдельных приложений. Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.
  2. Концептуальный уровень — центральное управляющее звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира.
  3. Физический уровень — собственно данные, расположенные в файлах или в страничных структурах, расположенных на внешних носителях информации.

Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем.

Выделение концептуального уровня позволило разработать аппарат централизованного управления базой данных.

Процесс прохождения пользовательского запроса

Рисунок 2.2 иллюстрирует взаимодействие пользователя, СУБД и ОС при обработке запроса на получение данных. Цифрами помечена последовательность взаимодействий:

  1. Пользователь посылает СУБД запрос на получение данных из БД.
  2. Анализ прав пользователя и внешней модели данных, соответствующей данному пользователю, подтверждает или запрещает доступ данного пользователя к запрошенным данным.
  3. В случае запрета на доступ к данным СУБД сообщает пользователю об этом (стрелка 12) и прекращает дальнейший процесс обработки данных, в противном случае СУБД определяет часть концептуальной модели, которая затрагивается запросом пользователя.
  4. СУБД запрашивают информацию о части концептуальной модели.
  5. СУБД получает информацию о запрошенной части концептуальной модели.
  6. СУБД запрашивает информацию о местоположении данных на физическом уровне (файлы или физические адреса).
  7. В СУБД возвращается информация о местоположении данных в терминах операционной системы.
  8. СУБД вежливо просит операционную систему предоставить необходимые данные, используя средства операционной системы.
  9. Операционная система осуществляет перекачку информации из устройств хранения и пересылает ее в системный буфер.
  10. Операционная система оповещает СУБД об окончании пересылки.
  11. СУБД выбирает из доставленной информации, находящейся в системном буфере, только то, что нужно пользователю, и пересылает эти данные в рабочую область пользователя.

БМД — это База Метаданных,именно здесь и хранится вся информация об используемых структурах данных, логической организации данных, правах доступа пользователей и, наконец, физическом расположении данных. Для управления БМД существует специальное программное обеспечение администрирования баз данных, которое предназначено для корректного использования единого информационного пространства многими пользователями.

Всегда ли запрос проходит полный цикл? Конечно, нет. СУБД обладает достаточно развитым интеллектом, который позволяет ей не повторять бессмысленных действий. И поэтому, например, если этот же пользователь повторно обратится к СУБД с новым запросом, то для него уже не будут проверяться внешняя модель и права доступа , а если дальнейший анализ запроса покажет, что данные могут находиться в системном буфере, то СУБД осуществит только 11 и 12 шаги в обработке запроса.

Разумеется, механизм прохождения запроса в реальных СУБД гораздо сложнее, но и эта упрощенная схема показывает, насколько серьезными и сложными должны быть механизмы обработки запросов, поддерживаемые реальными СУБД .

Пользователи банков данных

Как любой программно-организационно-техничеcкий комплекс, банк данных существует во времени и в пространстве. Он имеет определенные стадии своего развития:

  1. Проектирование.
  2. Реализация.
  3. Эксплуатация.
  4. Модернизация и развитие.
  5. Полная реорганизация.

На каждом этапе своего существования с банком данных связаны разные категории пользователей.

Определим основные категории пользователей и их роль в функционировании банка данных:

  • Конечные пользователи.Это основная категория пользователей, в интересах которых и создается банк данных . В зависимости от особенностей создаваемого банка данных круг его конечных пользователей может существенно различаться. Это могут быть случайные пользователи, обращающиеся к БД время от времени за получением некоторой информации, а могут быть регулярные пользователи. В качестве случайных пользователей могут рассматриваться, например, возможные клиенты вашей фирмы, просматривающие каталог вашей продукции или услуг с обобщенным или подробным описанием того и другого. Регулярными пользователями могут быть ваши сотрудники, работающие со специально разработанными для них программами, которые обеспечивают автоматизацию их деятельности при выполнении своих должностных обязанностей. Например, менеджер, планирующий работу сервисного отдела компьютерной фирмы, имеет в своем распоряжении программу, которая помогает ему планировать и распределять текущие заказы, контролировать ход их выполнения, заказывать на складе необходимые комплектующие для новых заказов. Главный принцип состоит в том, что от конечных пользователей не должно требоваться каких-либо специальных знаний в области вычислительной техники и языковых средств.
  • Администраторы банка данных.Это группа пользователей, которая на начальной стадии разработки банка данных отвечает за его оптимальную организацию с точки зрения одновременной работы множества конечных пользователей, на стадии эксплуатации отвечает за корректность работы данного банка информации в многопользовательском режиме. На стадии развития и реорганизации эта группа пользователей отвечает за возможность корректной реорганизации банка без изменения или прекращения его текущей эксплуатации.
  • Разработчики и администраторы приложений.Это группа пользователей, которая функционирует во время проектирования, создания и реорганизации банка данных. Администраторы приложений координируют работу разработчиков при разработке конкретного приложения или группы приложений, объединенных в функциональную подсистему. Разработчики конкретных приложений работают с той частью информации из базы данных, которая требуется для конкретного приложения.

Не в каждом банке данных могут быть выделены все типы пользователей. Мы уже знаем, что при разработке информационных систем с использованием настольных СУБД администратор банка данных, администратор приложений и разработчик часто существовали в одном лице. Однако при построении современных сложных корпоративных баз данных, которые используются для автоматизации всех или большей части бизнес-процессов в крупной фирме или корпорации, могут существовать и группы администраторов приложений, и отделы разработчиков. Наиболее сложные обязанности возложены на группу администратора БД .

Рассмотрим их более подробно.

В составе группы администратора БД должны быть:

  • системные аналитики;
  • проектировщики структур данных и внешнего по отношению к банку данных информационного обеспечения;
  • проектировщики технологических процессов обработки данных;
  • системные и прикладные программисты;
  • операторы и специалисты по техническому обслуживанию.

Если речь идет о коммерческом банке данных, то важную роль здесь играют специалисты по маркетингу.

Основные понятия и определения

Современные авторы часто употребляют термины » банк данных » и » база данных » как синонимы, однако в общеотраслевых руководящих материалах по созданию банков данных Государственного комитета по науке и технике (ГКНТ), изданных в 1982 г., эти понятия различаются. Там приводятся следующие определения банка данных, базы данных и СУБД :

Банк данных (БнД) — это система специальным образом организованных данных — баз данных, программных, технических, языковых, организационно-методических средств, предназначенных для обеспечения централизованного накопления и коллективного многоцелевого использования данных.

База данных ( БД ) — именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области .

Система управления базами данных ( СУБД ) — совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями.

Сухой канцелярский язык труден для восприятия, но эти определения четко разграничивают назначение всех трех базовых понятий, и мы можем принять их за основу.

Программы, с помощью которых пользователи работают с базой данных, называются приложениями. В общем случае с одной базой данных могут работать множество различных приложений. Например, если база данных моделирует некоторое предприятие, то для работы с ней может быть создано приложение , которое обслуживает подсистему учета кадров, другое приложение может быть посвящено работе подсистемы расчета заработной платы сотрудников, третье приложение работает как подсистемы складского учета, четвертое приложение посвящено планированию производственного процесса. При рассмотрении приложений, работающих с одной базой данных, предполагается, что они могут работать параллельно и независимо друг от друга, и именно СУБД призвана обеспечить работу множества приложений с единой базой данных таким образом, чтобы каждое из них выполнялось корректно, но учитывало все изменения в базе данных, вносимые другими приложениями.

Архитектура базы данных. Физическая и логическая независимость

Терминология в СУБД , да и сами термины » база данных » и » банк данных » частично заимствованы из финансовой деятельности . Это заимствование — не случайно и объясняется тем, что работа с информацией и работа с денежными массами во многом схожи, поскольку и там и там отсутствует персонификация объекта обработки: две банкноты достоинством в сто рублей столь же неотличимы и взаимозаменяемы, как два одинаковых байта (естественно, за исключением серийных номеров). Вы можете положить деньги на некоторый счет и предоставить возможность вашим родственникам или коллегам использовать их для иных целей. Вы можете поручить банку оплачивать ваши расходы с вашего счета или получить их наличными в другом банке, и это будут уже другие денежные купюры, но их ценность будет эквивалентна той, которую вы имели, когда клали их на ваш счет.

В процессе научных исследований, посвященных тому, как именно должна быть устроена СУБД , предлагались различные способы реализации. Самым жизнеспособным из них оказалась предложенная американским комитетом по стандартизации ANSI (American National Standards Institute) трехуровневая система организации БД , изображенная на рис. 2.1:

  1. Уровень внешних моделей — самый верхний уровень, где каждая модель имеет свое «видение» данных. Этот уровень определяет точку зрения на БД отдельных приложений. Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.
  2. Концептуальный уровень — центральное управляющее звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира.
  3. Физический уровень — собственно данные, расположенные в файлах или в страничных структурах, расположенных на внешних носителях информации.

Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем.

Выделение концептуального уровня позволило разработать аппарат централизованного управления базой данных.

Процесс прохождения пользовательского запроса

Рисунок 2.2 иллюстрирует взаимодействие пользователя, СУБД и ОС при обработке запроса на получение данных. Цифрами помечена последовательность взаимодействий:

  1. Пользователь посылает СУБД запрос на получение данных из БД.
  2. Анализ прав пользователя и внешней модели данных, соответствующей данному пользователю, подтверждает или запрещает доступ данного пользователя к запрошенным данным.
  3. В случае запрета на доступ к данным СУБД сообщает пользователю об этом (стрелка 12) и прекращает дальнейший процесс обработки данных, в противном случае СУБД определяет часть концептуальной модели, которая затрагивается запросом пользователя.
  4. СУБД запрашивают информацию о части концептуальной модели.
  5. СУБД получает информацию о запрошенной части концептуальной модели.
  6. СУБД запрашивает информацию о местоположении данных на физическом уровне (файлы или физические адреса).
  7. В СУБД возвращается информация о местоположении данных в терминах операционной системы.
  8. СУБД вежливо просит операционную систему предоставить необходимые данные, используя средства операционной системы.
  9. Операционная система осуществляет перекачку информации из устройств хранения и пересылает ее в системный буфер.
  10. Операционная система оповещает СУБД об окончании пересылки.
  11. СУБД выбирает из доставленной информации, находящейся в системном буфере, только то, что нужно пользователю, и пересылает эти данные в рабочую область пользователя.

БМД — это База Метаданных,именно здесь и хранится вся информация об используемых структурах данных, логической организации данных, правах доступа пользователей и, наконец, физическом расположении данных. Для управления БМД существует специальное программное обеспечение администрирования баз данных, которое предназначено для корректного использования единого информационного пространства многими пользователями.

Всегда ли запрос проходит полный цикл? Конечно, нет. СУБД обладает достаточно развитым интеллектом, который позволяет ей не повторять бессмысленных действий. И поэтому, например, если этот же пользователь повторно обратится к СУБД с новым запросом, то для него уже не будут проверяться внешняя модель и права доступа , а если дальнейший анализ запроса покажет, что данные могут находиться в системном буфере, то СУБД осуществит только 11 и 12 шаги в обработке запроса.

Разумеется, механизм прохождения запроса в реальных СУБД гораздо сложнее, но и эта упрощенная схема показывает, насколько серьезными и сложными должны быть механизмы обработки запросов, поддерживаемые реальными СУБД .

Пользователи банков данных

Как любой программно-организационно-техничеcкий комплекс, банк данных существует во времени и в пространстве. Он имеет определенные стадии своего развития:

  1. Проектирование.
  2. Реализация.
  3. Эксплуатация.
  4. Модернизация и развитие.
  5. Полная реорганизация.

На каждом этапе своего существования с банком данных связаны разные категории пользователей.

Определим основные категории пользователей и их роль в функционировании банка данных:

  • Конечные пользователи.Это основная категория пользователей, в интересах которых и создается банк данных . В зависимости от особенностей создаваемого банка данных круг его конечных пользователей может существенно различаться. Это могут быть случайные пользователи, обращающиеся к БД время от времени за получением некоторой информации, а могут быть регулярные пользователи. В качестве случайных пользователей могут рассматриваться, например, возможные клиенты вашей фирмы, просматривающие каталог вашей продукции или услуг с обобщенным или подробным описанием того и другого. Регулярными пользователями могут быть ваши сотрудники, работающие со специально разработанными для них программами, которые обеспечивают автоматизацию их деятельности при выполнении своих должностных обязанностей. Например, менеджер, планирующий работу сервисного отдела компьютерной фирмы, имеет в своем распоряжении программу, которая помогает ему планировать и распределять текущие заказы, контролировать ход их выполнения, заказывать на складе необходимые комплектующие для новых заказов. Главный принцип состоит в том, что от конечных пользователей не должно требоваться каких-либо специальных знаний в области вычислительной техники и языковых средств.
  • Администраторы банка данных.Это группа пользователей, которая на начальной стадии разработки банка данных отвечает за его оптимальную организацию с точки зрения одновременной работы множества конечных пользователей, на стадии эксплуатации отвечает за корректность работы данного банка информации в многопользовательском режиме. На стадии развития и реорганизации эта группа пользователей отвечает за возможность корректной реорганизации банка без изменения или прекращения его текущей эксплуатации.
  • Разработчики и администраторы приложений.Это группа пользователей, которая функционирует во время проектирования, создания и реорганизации банка данных. Администраторы приложений координируют работу разработчиков при разработке конкретного приложения или группы приложений, объединенных в функциональную подсистему. Разработчики конкретных приложений работают с той частью информации из базы данных, которая требуется для конкретного приложения.

Не в каждом банке данных могут быть выделены все типы пользователей. Мы уже знаем, что при разработке информационных систем с использованием настольных СУБД администратор банка данных, администратор приложений и разработчик часто существовали в одном лице. Однако при построении современных сложных корпоративных баз данных, которые используются для автоматизации всех или большей части бизнес-процессов в крупной фирме или корпорации, могут существовать и группы администраторов приложений, и отделы разработчиков. Наиболее сложные обязанности возложены на группу администратора БД .

Рассмотрим их более подробно.

В составе группы администратора БД должны быть:

  • системные аналитики;
  • проектировщики структур данных и внешнего по отношению к банку данных информационного обеспечения;
  • проектировщики технологических процессов обработки данных;
  • системные и прикладные программисты;
  • операторы и специалисты по техническому обслуживанию.

Если речь идет о коммерческом банке данных, то важную роль здесь играют специалисты по маркетингу.

Ссылка на основную публикацию
Adblock
detector
Уровень архитектуры БД