Fruitsekta.ru

Мир ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Куда направлено тангенциальное ускорение

Ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = (здесь – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

Тангенциальное и нормальное ускорения.

Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Читать еще:  Полное ускорение тела

Нормальное ускорениеэто составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

Формула скорости при равноускоренном движении

Поступательное и вращательное движение твердого тела.

Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Угловая скорость. Угловое ускорение.

Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением получаем

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

1.5

Последнее изменение этой страницы: 2016-07-11; Нарушение авторского права страницы

§ 1.27. Тангенциальное, нормальное и полное ускорения

Ускорение при неравномерном криволинейном движении

Пусть в некоторый момент времени t точка занимает положение А (рис. 1.83, а) и имеет скорость v1, a спустя малое время Δt точка переместилась в положение В1 приобретя скорость v2.

Разложим вектор изменения скорости Δ на составляющие Δτ и Δn (рис. 1.83, б). Первая составляющая направлена по скорости 1 т. е. по касательной к траектории, проведенной в точке А. Она называется тангенциальной (касательной) составляющей вектора Δ. Составляющая Δn1. Поэтому Δn называется нормальной составляющей приращения скорости Δ. По правилу сложения векторов

Читать еще:  Канальная архитектура эвм

Δ = Δτ + Δn.

Разделим почленно это равенство на Δt и перейдем к пределу при стремлении Δt -» 0:

Каждое слагаемое этого равенства есть составляющая ускорения (см. § 1.15). Левая часть равенства (1.27.1) является полным ускорением точки. Первое слагаемое в правой части называется тангенциальным (касательным) ускорением, второе слагаемое — уже знакомое нам нормальное ускорение.

Тангенциальное ускорение направлено по касательной к траектории, так как t ↑↑ . При ускоренном движении точки (модуль скорости возрастает) касательное ускорение имеет то же направление, что и скорость. При замедленном движении оно направлено противоположно скорости. Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение ап перпендикулярно скорости и характеризует быстроту изменения направления скорости.

Полное ускорение точки равно сумме тангенциального и нормального ускорений:

На рисунке 1.84, а изображен случай ускоренного движения, а на рисунке 1.84, б — замедленного движения точки.

Модуль нормального ускорения

Мы нашли, как направлены тангенциальное и нормальное ускорения. Выражение для модуля нормального ускорения при движении по окружности радиусом r нам известно:

Если движение происходит вдоль произвольной кривой, то под r надо понимать радиус кривизны траектории в данной точке. Выясним, что такое радиус кривизны кривой линии в точке. Выберем на кривой АВ вблизи точки М с обеих сторон от нее еще две точки: К и L (рис. 1.85). Через три точки К, М и L можно провести единственную окружность. Если точки К и L приближать к точке М, каждый раз проводя через эти три точки окружность, то мы получим серию окружностей разных радиусов, дуги которых вблизи точки М все меньше и меньше будут отличаться от кривой АВ.

В пределе, когда точки К и L сколь угодно близко подходят к точке М, радиус проходящей через них окружности также стремится к предельному значению. Это предельное значение радиусов окружностей и называется радиусом кривизны кривой АВ в точке М.

Модуль тангенциального и полного ускорений

Модуль тангенциального ускорения равен

где dv — приращение модуля скорости за бесконечно малый интервал времени dt. Модуль полного ускорения а. точки можно найти по теореме Пифагора (см. рис. 1.84, а, б):

Полное ускорение направлено по секущей в сторону вогнутости траектории.

Классификация движений

По значениям, которые принимают нормальное и тангенциальное ускорения, можно классифицировать различные движения точки.

Если аn = 0, то при любых значениях скорости движение точки происходит по прямой линии. Эту прямую можно рассматривать как окружность бесконечно большого радиуса (г —> ∞).

Если аt = 0 и аn = 0, но скорость отлична от нуля, то движение по прямой будет равномерным, так как не меняется модуль скорости.

В случае аn ≠ 0 движение точки криволинейное, так как меняется направление скорости. Когда аn ≠ 0, аt = 0, то при движении по кривой линии модуль скорости точки не изменяется — точка движется равномерно.

Если аt = 0, аn = const, то точка совершает равномерное движение по окружности.

И наконец, когда оба ускорения 1 и n отличны от нуля, то точка движется неравномерно по криволинейной траектории.

В заключение заметим, что если точка движется равномерно по криволинейной траектории, то можно вычислить путь, пройденный точкой, по формуле s = vt.

При произвольном движении вектор ускорения направлен внутрь траектории. Тангенциальная составляющая этого вектора характеризует изменение скорости по модулю, а нормальная составляющая — по направлению.

Полное ускорение и его компоненты. Ускорение тангенциальное и нормальное ускорение. Формулы и пример решения задачи

В кинематике для однозначного определения характеристик движения тела в любой точке траектории необходимо знать его скорость и ускорение. Зависимость от времени этих величин предоставляет всю необходимую информацию для вычисления пройденного телом пути. Рассмотрим подробнее в статье, что такое ускорение тангенциальное и нормальное ускорение.

В физике

Прежде чем рассматривать для механического движения ускорение нормальное и тангенциальное ускорение, познакомимся с самим физическим понятием. Определение ускорения является достаточно простым. В физике под ним понимают характеристику изменения скорости. Последняя является векторной величиной, определяющей быстроту изменения координат движущегося объекта в пространстве. Скорость измеряется в метрах в секунду (расстояние, пройденное за единицу времени). Если ее обозначить символом v¯, тогда математическое определение ускорения a¯ будет выглядеть так:

Читать еще:  Ускорение работы процессора

Это равенство определяет так называемое полное мгновенное ускорение. Мгновенным оно называется потому, что характеризует изменение скорости лишь в данный момент времени.

Если движение является равноускоренным, то есть в течение длительного времени ускорение не меняет своего модуля и направления, тогда можно записать следующую формулу для его определения:

Где Δt>>dt. Величина a¯ здесь называется средним ускорением, которое в общем случае отличается от мгновенного.

Ускорение измеряется в системе СИ в метрах в квадратную секунду (м/с 2 ).

Траектория движения и компоненты полного ускорения

Чаще всего тела в природе движутся по кривым траекториям. Примерами такого перемещения являются: вращение по своим орбитам планет, параболическое падение камня на землю, поворот автомобиля. В случае криволинейной траектории в любой момент времени скорость направлена по касательной к рассматриваемой точке траектории. Как при этом направлено ускорение?

Чтобы ответить на поставленный выше вопрос, запишем скорость тела в следующей форме:

Здесь ut¯ — вектор скорости единичный, индекс t означает, что он направлен по касательной к траектории (тангенциальная компонента). Символом v обозначен модуль скорости v¯.

Теперь, следуя определению ускорения, можно провести дифференцирование скорости по времени, имеем:

Таким образом, полное ускорение a¯ представляет собой векторную сумму двух компонент. Первое и второе слагаемое называются нормальным и тангенциальным ускорением точки. Подробнее рассмотрим каждую из этих компонент.

Ускорение тангенциальное

Запишем еще раз формулу для этой компоненты полного ускорения:

Это выражение позволяет описать свойства величины at¯:

  • Она направлена точно так же, как и сама скорость или противоположно ей, то есть по касательной к траектории. Об этом свидетельствует элементарный вектор ut¯.
  • Она характеризует изменение скорости по абсолютной величине, что отражает множитель dv/dt.

Эти свойства позволяют сделать важный вывод: для прямолинейного движения полное и тангенциальное ускорения — это одна и та же величина. В случае криволинейного перемещения полное ускорение всегда больше по модулю, чем тангенциальное. Когда рассматривают физические задачи на прямолинейное равноускоренное движение, то ведут речь именно об этой компоненте ускорения.

Ускорение нормальное

Рассматривая тему скорости, ускорения тангенциального и ускорения нормального, дадим характеристику последней величине. Запишем формулу для нее:

Чтобы записать явно правую часть равенства, воспользуемся следующими соотношениями:

Здесь dL — это пройденный телом путь за промежуток времени dt, r — радиус кривизны траектории. Первое выражение соответствует определению скорости, второе равенство следует из геометрических соображений. Пользуясь этими формулами, получаем конечное выражение для нормального ускорения:

То есть величина an¯ не зависит от изменения скорости, как тангенциальная компонента, а определяется исключительно ее модулем. Нормальное ускорение вдоль нормали к данному участку траектории направлено, то есть к центру кривизны. Например, во время движения по окружности вектор an¯ направлен к ее центру, поэтому нормальное ускорение называют часто центростремительным.

Если за изменение абсолютной величины скорости ответственно ускорение тангенциальное, то нормальная компонента ответственна за изменение вектора скорости, то есть она определяет траекторию перемещения тела.

Ускорение полное, нормальное и тангенциальное

Разобравшись с понятием ускорения и с его компонентами, приведем теперь формулу, которая позволяет определить полное ускорение. Поскольку рассмотренные компоненты направлены под углом 90 o друг к другу, то для определения абсолютной величины их векторной суммы можно использовать теорему Пифагора. Формула для полного ускорения имеет вид:

Направление величины a¯ можно определить по отношению к вектору любой из компонент. Например, угол между a¯ и an¯ вычисляется так:

Учитывая приведенную выше формулу для модуля a¯, можно сделать вывод: при равномерном движении по окружности полное ускорение совпадает с центростремительным.

Решение задачи

Пусть тело движется по окружности радиусом 1 метр. Известно, что его скорость изменяется по следующему закону:

Необходимо определить ускорение тангенциальное и нормальное ускорение в момент t = 4 секунды.

Для тангенциального имеем:

Для того чтобы найти модуль ускорения нормального, сначала следует вычислить значение скорости в заданный момент времени. Имеем:

Теперь можно воспользоваться формулой для an:

Таким образом, мы определили все величины, которые требовалось найти для решения задачи.

Ссылка на основную публикацию
Adblock
detector