Ускорение. Нормальная и тангенциальная составляющие ускорения.
ВОПРОСЫ К ТЕОРЕТИЧЕСКОМУ ЗАЧЁТУ ПО ФИЗИКЕ (ЧАСТЬ I ) (для всех специальностей заочного отделения)
В дни, предусмотренные расписанием зачётно-экзаменационных сессий, студенты сдают зачёт/экзамен в электронной форме (в виде тестирования на сайте ДО). В случае неудачи или при неявке на тестирование студентам предоставляется возможность сдачи зачёта/экзамена в устной форме в дополнительный день. Экзаменационные билеты по первой части физики (при устной форме сдачи) включают в себя по два вопроса из приведённого ниже списка.
Модели в механике: материальная точка и абсолютно твёрдое тело. Система отсчета, радиус-вектор, координаты. Путь и перемещение. Скорость.
Материальная точка – это любое тело, размерами которого можно пренебречь.
Абсолютно твердое тело – такая система материальных точек, в которой расстояние между материальными точками не изменяется, т.е. тело не деформируется ни при каких условиях.
Система отсчёта — это совокупность тела отсчёта, связанной с ним системы координат и системыотсчёта времени, по отношению к которой рассматривается движение каких-либо тел.
Система координат – когда выбрано тело отсчета и через какую-нибудь его точку проводят оси координат и положение любой точки в пространстве описывают ее координатами.
Положение тела или точки можно задать относительно какого-нибудь другого тела, которое называется телом отсчета.
Системы координат бывают различными: прямоугольные и косоугольные, полярные, сферические и другие.
Наиболее часто используется декартова система координат. Это прямоугольная система координат, состоящая из трех взаимно перпендикулярных осей, распределенных в пространстве определенным образом.
Развитие тех или иных процессов в физике происходит с течением времени, т.е. время играет роль параметра (переменной), от которой могут зависеть те или иные физические величины. С точки зрения современной физики и само время может зависеть от тех или иных физических процессов (релятивистская физика). Т.о. мы подошли к тому, чтобы сформулировать основную задачу механики, т.е. ту задачу, которая решается всеми тремя разделами механики.
Эта задача состоит в том, чтобы знать положение тела или точки в любой момент времени, или знать зависимость от времени координат тела или точки. Такая зависимость называется кинематическим законом движения, она может быть записана в виде:
íy=f2(t) Координатный способ записи. (1.1)
Векторная форма записи. (1.2)
— радиус-вектор данной точки.
Можно показать, что эти две формы записи представления кинематического закона движения взаимосвязаны. Для этого необходимо знать, что такое радиус-вектор и как он выражается через координаты.
Радиус-вектор точки – это вектор, проведенный из начала координат в данную точку.
.
Через каждую точку пространства можно провести радиус-вектор. — эта формула описывает движение конца вектора в пространстве.
.
Физический смысл — координаты изменяются со временем.
Механическое движение описывается при помощи ряда основных кинематических понятий и величин: траектория, путь, перемещение, скорость, ускорение.
Траектория – линия, которую описывает конец радиус-вектора .
Перемещение тела (материальной точки) — направленный отрезок прямой, соединяющий начальное положение с его последующим движением.
Скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка.
, или
Скорость – величина, измеряемая длиной пути, проходимого в единицу времени.
Ускорение – величина, численно равная изменению скорости в единицу времени.
Путь – длина линии, пройденной за время Dt.
Ускорение. Нормальная и тангенциальная составляющие ускорения.
Физическая величина, которая определяет быстроту изменения скорости, называется ускорением. Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени): , где
– ускорение;
– изменение скорости;
– промежуток времени, за которое произошло изменение скорости;
– производная скорости по времени.
Так как скорость – величина векторная, то она может меняться по модулю и направлению, поэтому ускорение имеет две естественные составляющие: тангенциальную (параллельную вектору скорости) и нормальную (перпендикулярную вектору скорости).
, где
– полное ускорение;
– тангенциальная составляющая ускорения;
– нормальная составляющая ускорения (см. рис. 1).
Рис. 1. Тангенциальная и нормальная составляющие полного ускорения
Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.
1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).
Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью
2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).
Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости
Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).
Рис. 4. Направление нормального ускорения
Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:
При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).
Рис. 5. Прямолинейное движение
При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).
Рис. 6. Криволинейное движение
Дата добавления: 2018-06-27 ; просмотров: 609 ;
Ускорение
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
где – вектор ускорения.
Направление вектора ускорения совпадает с направлением изменения скорости Δ =
—
(здесь
– это начальная скорость, то есть скорость, с которой тело начало ускоряться).
В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость
. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ
=
—
. Тогда определить ускорение можно так:
Рис. 1.8. Среднее ускорение.
В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.
Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а
Рис. 1.9. Мгновенное ускорение.
При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
(согласно теореме Пифагора для прямоугольно прямоугольника).
Направление полного ускорения также определяется правилом сложения векторов:
Тангенциальное и нормальное ускорения.
Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение—это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.
Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.
Формула скорости при равноускоренном движении
Поступательное и вращательное движение твердого тела.
Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.
Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.
Угловая скорость. Угловое ускорение.
Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:
Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени
Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела
Связь линейной скорости с угловой и тангенциального ускорения с угловым.
Отдельные точки вращающегося тела имеют различные линейные скорости
. Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости
определяется скоростью вращения тела
и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени
тело повернулось на угол
(рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный
Линейная скорость точки по определению.
![]() |
Тангенциальное ускорение
Воспользовавшись тем же отношением получаем
1.4
Первый закон Ньютона (или закон инерции)
Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.
Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).
В природе существуют четыре вида взаимодействия
1. Гравитационное (сила тяготения) – это взаимодействие между телами, которые обладают массой.
2. Электромагнитное- справедливо для тел, обладающих электрическим зарядом, ответственно за такие механические силы, как сила трения и сила упругости.
3.Сильное- взаимодействие короткодействующее, то есть действует на расстоянии порядка размера ядра.
4. Слабое. Такое взаимодействие ответственно за некоторые виды взаимодействия среди элементарных частиц, за некоторые виды β-распада и за другие процессы, происходящие внутри атома, атомного ядра.
Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.
Сила – является количественной мерой действия одного тела на другое.
Второй закон Ньютона.
Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma
Измеряется в
Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).
Выражение второго закона Ньютона через изменение импульса тела
Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).
Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.
Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.
1.5
Последнее изменение этой страницы: 2016-07-11; Нарушение авторского права страницы
Нормальная и тангенциальная составляющие ускорения.
Координата (линейная, угловая).
2)Перемещение ( ) – вектор , соединяющий начальную точку траектории с конечной.
3) Путь ( ) –расстояние пройденное телом от начальной точки до конечной.
4) Линейная скорость :
Скоростью (мгновенной скоростью) движения называется векторная величина, равная отношению малого перемещения к бесконечно малому промежутку времени, за которое это перемещение производится
В проекциях : Ux=
Средняя (путевая) скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:
Путевая скорость :
Средняя путевая скорость, в отличие от мгновенной скорости не является векторной величиной.
Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:
Скорость перемещения :
Средняя скорость в общем виде :
Мгновенным ускорением называется векторная величина, равная отношению малого изменения скорости к малому промежутку времени, за который происходило это изменение:
Ускорение характеризует быстроту вектора в данной точке пронстранства.
ax= =
Среднее ускорение – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
;
Изменение скорости :
Нормальная и тангенциальная составляющие ускорения.
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Направление вектора тангенциального ускорения τ) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение– это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
Вопрос 2. Описание движения материальной точки (частные случи : равномерное движение по окружности, прямолинейное равномерное движение, равнопеременное движение по окружности).
Равномерное движение по окружности.
Равномерное движение по окружности – это простейший пример криволинейного движения. Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость.
При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v (вэ) = const, а изменяется только направление вектора скорости . Тангенциальное ускорение в этом случае отсутствует (ar = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение аЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.
Модуль центростремительного ускорения равен
aЦС=v 2 / R
Где v – линейная скорость, R – радиус окружности
Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус. Угол поворота измеряется в радианах.
Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:
ω = φ / t
Единица измерения угловой скорости – радиан в секунду [рад/с]
Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности.
v = = = Rω или v = Rω
Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности. Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.
n = 1 / T
T = 2π / ω
То есть угловая скорость равна
ω = 2π / T = 2πn
Центростремительное ускорение можно выразить через период Т и частоту обращения n:
aЦС = (4π 2 R) / T 2 = 4π 2 Rn 2