Fruitsekta.ru

Мир ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тангенциальная составляющая ускорения тела выражается формулой

Ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = (здесь – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

Тангенциальное и нормальное ускорения.

Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Читать еще:  Приложения для ускорения телефона андроид

Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорениеэто составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

Формула скорости при равноускоренном движении

Поступательное и вращательное движение твердого тела.

Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Угловая скорость. Угловое ускорение.

Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением получаем

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

Тангенциальная составляющая ускорения

Виктория Борисовна Петропавловская

Владимир Владимирович Белов

КРАТКИЙ КУРС МАТЕРИАЛОВЕДЕНИЯ
И ТЕХНЕОЛОГИИ КОНСТРУКЦИОННЫХ
МАТЕРИАЛОВ ДЛЯ СТРОИТЕЛЬСТВА

Редактор В.А. Румянцева

Корректор Е.В. Маняшина

Технический редактор Г.В. Комарова

Подписано в печать 10.08.05

Формат 60 х 84 / 16 Бумага писчая

Физ. печ. л. 11,25 Усл. печ. л. 10,46 Уч.-изд. л. 9,79

Тираж 150 экз. Заказ № 143 Цена 99 руб. 10 коп.

Издательство Тверского государственного технического университета

170026, г. Тверь, наб. А. Никитина, 22

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Читать еще:  Формула полного ускорения тела

Найдем вторую составляющую ускорения. Допустим, что точка В достаточно близка к точке А, поэтому Ds можно считать дугой окружности некоторого радиуса r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует Dvn/AB = v1/r, но так как AB = vDt, то

В пределе при получим .

Поскольку , угол EAD стремится к нулю, а так как треугольник EAD равнобед­ренный, то угол ADE между v и Dvn стремится к прямому. Следовательно, при векторы Dvn и v оказываются взаимно перпендикулярными. Tax как вектор скорости направлен по касательной к траектории, то вектор Dvn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускорения, равная

называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис.5):

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная состав­ляющая ускорения — быстроту изменения скорости по направлению (направлена к цен­тру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения движе­ние можно классифицировать следующим образом:

1) , аn = 0 прямолинейное равномерное движение;

2) , аn = 0 прямолинейное равнопеременное движение. При таком виде движения

Если начальный момент времени t1=0, а начальная скорость v1=v, то, обозначив t2=t и v2=v, получим , откуда

Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения

3) , аn = 0— прямолинейное движение с переменным ускорением;

4) , аn = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы an=v 2 /r следует, что радиус кривизны должен быть посто­янным. Следовательно, движение по окружности является равномерным;

5) , равномерное криволинейное движение;

6) , — криволинейное равнопеременное движение;

7) , — криволинейное движение с переменным ускорением.

§ 4. Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени Dt зададим углом D . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняетсяправилу правого винта(рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваютсяпсевдовекторами илиаксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор (рис.7). Размерность угловой скорости dim w=T – 1 , а ее единица — ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени Dt = T соответствует = 2p, то = 2p/T, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном — противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:

Читать еще:  В чем состоит закон ускорения истории

В случае равнопеременного движения точки по окружности (e=const)

где w — начальная угловая скорость.

Дата добавления: 2014-12-29 ; Просмотров: 359 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Тангенциальное и нормальное ускорения.

Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорениеэто составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

Формула скорости при равноускоренном движении

Поступательное и вращательное движение твердого тела.

Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Угловая скорость. Угловое ускорение.

Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением получаем

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

1.5

Последнее изменение этой страницы: 2016-07-11; Нарушение авторского права страницы

Ссылка на основную публикацию
Adblock
detector
×
×