Fruitsekta.ru

Мир ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Производительность жестких дисков зависит от характеристик

Производительность жестких дисков зависит от характеристик

Время, которое требуется жёсткому диску для ответа на запрос ввода/вывода и для его завершения зависит от двух факторов:

физических и механических ограничений жёсткого диска

создаваемой системой нагрузки.

Эти аспекты производительности подробно рассматриваются в следующих разделах.

Так как жёсткие диски являются электромеханическими устройствами, это накладывает на их скорость и производительность различные ограничения. Для выполнения каждого запроса ввода/вывода необходима совместная работа различных компонентов диска. Так как эти компоненты имеют свои характеристики производительности, общая производительность жёсткого диска определяется суммой производительности отдельных компонентов.

Однако электрические компоненты как минимум на порядок быстрее механических. Таким образом, наибольшее влияние на производительность диска оказывают механические компоненты.

Самый эффективный способ увеличить производительность жёсткого диска — сократить число механических действий, насколько это возможно.

Среднее время доступа типичного жёсткого диска приблизительно равно 8,5 миллисекунд. В следующих разделах рассматривается, откуда берётся это число, и показывается, как каждый компонент влияет на общую производительность жёсткого диска.

Во всех выпускаемых сегодня жёстких дисках встроены сложные компьютерные системы, управляющие их работой. Эти компьютерные системы выполняют следующие задачи:

взаимодействие с внешним миром через интерфейс жёсткого диска

управление работой остальных компонентов жёсткого диска и восстановление в случае различных ошибок, которые могут возникнуть

обработка низкоуровневых данных, считываемых или записываемых на носитель хранилища

И хотя в жёстких дисках используются довольно мощные микропроцессоры, они выполняют свои задачи в течение какого-то времени. В среднем это время составляет порядка 0,003 миллисекунд.

Головки чтения/записи работают только при вращении пластин, над которыми они «парят». Так как чтение и запись данных возможно только при перемещении носителя под головками, время, необходимое для того, чтобы нужный сектор полностью прошёл под головкой, в значительной мере определяет вклад, который вносит головка в общее время доступа. Для диска с 10 000 оборотов/мин и 700 секторами на дорожке это время в среднем составляет 0,0086 миллисекунд.

Так как пластины диска крутятся постоянно, маловероятно, что в момент получения запроса ввода/вывода пластина будет находиться в той точке, в которой сразу можно обратиться к нужному сектору. Следовательно, даже если все остальные компоненты диска готовы обратиться к этому сектору, они должны ждать, пока под головкой не окажется нужный сектор вращающейся пластины.

Вот почему в высокоскоростных дисках обычно пластины диска вращаются обычно с большей скоростью. Сегодня скорость 15 000 оборотов/мин. имеют самые скоростные диски, тогда как для дисков начального уровня считается достаточной скорость 5 400 оборотов/мин. В среднем для диска 10 000 оборотов/мин. задержка составляет около 3 миллисекунд.

Если выбрать из всех компонентов жёсткого диска один, который является его Ахиллесовой пятой, это будет механизм доступа. Объясняется это тем, что механизм доступа очень быстро и точно должен перемещаться на относительно большие расстояния. Кроме этого, механизм доступа перемещается неравномерно — он должен быстро ускоряться для перемещения к нужному цилиндру, а затем быстро останавливаться, чтобы не проскочить его. Мало того, механизм доступа должен быть крепким (чтобы противостоять силам, возникающим при быстром перемещении) и лёгким (чтобы его было легче ускорять/тормозить).

Одновременно достичь этих конфликтующих целей сложно и это объясняет тот факт, что на перемещение механизма доступа уходит больше времени, чем на работу других компонентов. Таким образом, в большей степени общая производительность жёсткого диска определяется временем перемещения механизма доступа, которое в среднем составляет порядка 5,5 миллисекунд.

Ещё один фактор, влияющий на производительность жёсткого диска — нагрузка этого диска. Нагрузка диска имеет свои характеристики, в частности:

Отношение объёма чтения к объёму записи

Число активных клиентов диска

Ограниченность области чтения/записи

Эти факторы рассматриваются подробно в следующих разделах.

Для среднего жёсткого диска, в котором данные хранятся на магнитном носителе, отношение числа операций чтения к число операций записи не имеет большого значения, так как и чтение, и запись выполняется одинаковое время [1] . Однако, в других технологиях хранения на выполнение чтения и записи требуется разное время [2] .

Вследствие этого, устройства, у которых скорость записи ниже скорости чтения (например), способны выполнять меньше операций записи, чем чтения. Также можно сказать, что на операцию записи устройство расходует больше потенциала обработки запросов, чем на операцию чтения.

Нагрузка жёсткого диска, который обрабатывает запросы ввода/вывода, поступающие от нескольких источников, отличается от нагрузки жёсткого диска с всего лишь одним источником запросов. Основная причина этого состоит в том, что несколько клиентов диска могут создать большую нагрузку, чем один единственный клиент.

Объясняется это тем, что прежде чем клиент сможет послать очередной запрос, он должен выполнить некоторые действия. Помимо прочего, чтобы запрос мог быть выполнен, клиент должен его сформировать, а так как на это формирование уходит некоторое время, нагрузка, которую может создать один клиент, имеет верхний предел, и чтобы её увеличить, нужен более быстрый процессор. Этот предел становится ещё более явным, если клиент обращается к диску, обрабатывая данные, вводимые человеком.

Однако, несколько клиентов могут создать большие нагрузки. Пока мощности процессора достаточно для вычислений, необходимых для формирования запросов к диску, увеличение числа клиентов приводит к увеличению общей нагрузки.

Однако есть и ещё один фактор, оказывающий влияние на общую нагрузку. Он обсуждается в следующем разделе.

Хотя этот фактор влияет на производительность жёсткого диска не только в окружении со многими клиентами, но в таком окружении он обычно проявляется в большей степени. С точки зрения производительности важно, находятся ли запрашиваемые данные физически рядом с данными, запрошенными до этого, или далеко от них.

Почему это имеет значение, становится понятно, если вспомнить электромеханическое устройство жёсткого диска. Самым медленным компонентом любого жёсткого диска является механизм доступа. Таким образом, если для обращения к данным, указанным в поступающих запросах, перемещать механизм доступа не нужно, жёсткий диск сможет выполнить гораздо больше запросов, чем если запрашиваемые данные будут разбросаны по всему диску и для обращения к ним потребуется активно перемещать механизм доступа.

Это можно проиллюстрировать с помощью характеристик производительности жёсткого диска. В число этих характеристик обычно входит время перемещения на соседний цилиндр (когда механизм доступа перемещается на очень маленькое расстояние — только до следующего цилиндра), а время перемещения по всему диску (когда механизм доступа перемещается от самого первого цилиндра до самого последнего). Например, высокопроизводительный жёсткий диск имеет следующие характеристики:

Таблица 5-4. Время перемещения к соседнему цилиндру и по всему диску (в миллисекундах)

Замечания

Подсказка

На самом деле это не совсем так. Во всёх жёстких дисках есть какой-то объём интегрированной кэш-памяти, позволяющей увеличить скорость чтения. Однако, любой запрос на чтение данных может быть в конечном счёте удовлетворён только, когда данные физически считаются с носителя. Это значит, что хотя кэш может способствовать некоторому увеличению быстродействия, он никогда не сможет полностью исключить время, требуемое для физического чтения данных с носителя.

Это касается некоторых оптических дисков и объясняется физическими ограничениями технологий, применяемых при реализации оптических хранилищ данных.

Что влияет на скорость работы компьютера? 6 основных факторов

Главная ≫ Основы компьютера ≫ Аппаратное обеспечение ≫ Что влияет на скорость работы компьютера? 6 основных факторов

Опубликовано: 26 октября 2016 г.
0 комментариев

Скорость и производительность работы компьютера определяется множеством факторов. Невозможно добиться ощутимого повышения производительности за счёт улучшения характеристик какого-либо одного устройства, например, за счёт повышения тактовой частоты процессора. Только тщательно подобрав и сбалансировав все компоненты компьютера можно добиться существенного повышения производительности работы компьютера.

Следует помнить, что компьютер не может работать быстрее, чем самое медленное из устройств, задействованных для выполнения этой задачи.

Содержание:

Тактовая частота процессора

Наиболее важный параметр производительности компьютера — скорость процессора, или, как её называют, тактовая частота, которая влияет на скорость выполнения операций в самом процессоре. Тактовой частотой называют рабочую частоту ядра процессора (т. е. той части, которая выполняет основные вычисления) при максимальной загрузке. Отметим, что другие компоненты компьютера могут работать на частотах, отличных от частоты процессора.

Измеряется тактовая частота в мегагерцах (MHz) и гигагерцах (GHz). Количество тактов в секунду, выполняемых процессором, не совпадает с количеством операций, выполняемых процессором за секунду, поскольку для реализации многих математических операций требуется несколько тактов. Понятно, что в одинаковых условиях процессор с более высокой тактовой частотой должен работать эффективнее, чем процессор с более низкой тактовой частотой.

С увеличением тактовой частоты процессора увеличивается и число операций, совершаемых компьютером за одну секунду, а следовательно, возрастает и скорость работы компьютера.

Объем оперативной памяти

Важным фактором, влияющим на производительность компьютера, является объем оперативной памяти и её быстродействие (время доступа, измеряется в наносекундах). Тип и объем оперативной памяти оказывает большое влияние на скорость работы компьютера.

Самым быстро работающим устройством в компьютере является процессор. Вторым по скорости работы устройством компьютера является оперативная память, однако, оперативная память значительно уступает процессору по скорости.

Чтобы сравнить скорость работы процессора и оперативной памяти, достаточно привести только один факт: почти половину времени процессор простаивает в. ожидании ответа от оперативной памяти. Поэтому чем меньше время доступа к оперативной памяти (т. е. чем она быстрее), тем меньше постаивает процессор, и тем быстрее работает компьютер.

Чтение и запись информации из оперативной памяти осуществляется значительно быстрее, чем с любого другого устройства для хранения информации, например, с винчестера, поэтому увеличение объёма оперативной памяти и установка более быстрой памяти приводит к увеличению производительности компьютера при работе с приложениями.

Объем жёсткого диска и скорость работы жёсткого диска

На производительность компьютера влияет скорость связи шины жёсткого диска и свободный объем дискового пространства.

Объем жёсткого диска, как правило, влияет на количество программ, которые вы можете установить на компьютер, и на количество хранимых данных. Ёмкость накопителей для жёстких дисков измеряется, как правило, десятками и сотнями гигабайт.

Жёсткий диск работает медленнее, чем оперативная память. Так как скорость обмена данными для жёстких дисков Ultra DMA 100 не превышает 100 мегабайт в секунду (133 Мбайт/сек для Ultra DMA 133). Ещё медленнее происходит обмен данными в DVD и CD-приводах.

Важными характеристиками винчестера, влияющими на Скорость работы компьютера, являются:

  • Скорость вращения шпинделя;
  • Среднее время поиска данных;
  • Максимальная скорость передачи данных.
[1]
Характеристика винчестераИспользуемые параметры
Скорость вращения шпинделя5400, 7200 оборотов в минуту
Время случайного доступа (англ. random access time)5-10 мс
Скорость передачи данных (англ. Transfer Rate)100, 133 Мбайт/с
Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителемсотни Гбайт — несколько Тбайт

Размер свободного места на жёстком диске

При нехватке места в оперативной памяти компьютера Windows и многие прикладные программы вынуждены размещать часть данных, необходимых для текущей работы, на жёстком диске, создавая так называемые временные файлы (swap files) или файлы подкачки.

Поэтому важно, чтобы на диске было достаточно свободного места для записи временных файлов. При недостатке свободного места на диске многие приложения просто не могут корректно работать или их скорость работы значительно падает.

После завершения работы приложения все временные файлы, как правило, автоматически удаляются с диска, освобождая место на винчестере. Если размер оперативной памяти достаточен для работы (не менее нескольких Гб), то размер файла подкачки для персонального компьютера не так существенно влияет на быстродействие компьютера и может быть установлен минимальным.

Дефрагментация файлов

Операции удаления и изменения файлов на диске приводят к фрагментации файлов, выражающейся в том, что файл занимает не соседние области на диске, а разбивается на несколько частей, хранящихся в разных областях диска. Фрагментация файлов приводит к дополнительным затратам на поиск всех частей открываемого файла, что замедляет доступ к диску и уменьшает (как правило, не существенно) общее быстродействие диска.

Для ускорения работы с жёстким диском, рекомендуется периодически проводить дефрагментацию диска. Дефрагментация диска — процесс перезаписи частей файла в соседние сектора на жёстком диске для ускорения доступа и загрузки.

Например, для выполнения дефрагментации в операционной системе Windows 7 щёлкните по кнопке Пуск и в раскрывшемся главном меню выберите последовательно команды Все программы, Стандартные, Служебные, Дефрагментация диска.

Количество одновременно работающих приложений

Windows — многозадачная операционная система, которая позволяет одновременно работать сразу с несколькими приложениями. Но чем больше приложений одновременно работают, тем сильнее возрастает нагрузка на процессор, оперативную память, жёсткий диск, и тем самым замедляется скорость работы всего компьютера, всех приложений.

Поэтому те приложения, которые не используются в данный момент, лучше закрыть, освобождая ресурсы компьютера для оставшихся приложений.

ХОТИТЕ СКАЗАТЬ СПАСИБО? ⇒ Поделитесь статьей

ХОТИТЕ СКАЗАТЬ БОЛЬШОЕ СПАСИБО? ⇒ Поддержите наш проект

Компьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Накопители на жёстких дисках

Скорость передачи данных

Вероятно, наиболее важной характеристикой при оценке общей производительности накопителя является скорость передачи данных, но, с другой стороны, она же считается наименее понятной. Дело в том, что в настоящее время для каждого дисковода можно определить сразу несколько скоростей передачи данных, чему, как правило, не придается значение. Не позвольте себе обмануться наличием интерфейса ATA-133 или SATA-150. Гораздо более важным показателем является средняя скорость передачи данных самого жесткого диска, а этот показатель может быть значительно ниже производительности интерфейса. Скорость передачи данных устройством представляет собой усредненную скорость операций чтения и записи на диск. В то же время скорость передачи интерфейса определяет объем данных, которые можно переместить между материнской платой и буфером устройства за единицу времени. На общую производительность жесткого диска сильное влияние оказывает и частота вращения шпинделя (несложно понять, что диск, вращающийся со скоростью 10000 об/мин способен быстрее записать или считать информацию, чем диск, имеющий скорость вращения 7200 об/мин). При оценке скорости обращайте внимание на производительность именно носителя, а не интерфейса.

Дополнительную путаницу вносит то, что производители жестких дисков могут сообщатьлюбую из семи доступных скоростей передачи данных, которыми характеризуется любой диск. Наименее важной из них является номинальная скорость передачи данных интерфейса. В устройствах PATA она может достигать 100 или 133 Мбайт/с, а в устройствах SATA — 150 или 300 Мбайт/с. К сожалению, многие оценивают эту характеристику как способность диска записывать и считывать информацию с такой скоростью, что далеко не так. Более важной характеристикой является скорость передачи данных носителя. Обычно она представляется несколькими показателями: минимальными и максимальными скоростями формальной и фактической передачи данных, а также их средними значениями. Если средние значения отсутствуют, их несложно вычислить и вручную.

Средняя скорость передачи данных считается более важной характеристикой, чем скорость передачи данных интерфейса. Это связано с тем, что средняя скорость представляет собой действительную скорость непосредственного считывания данных с поверхности жесткого диска. При этом максимальная скорость является скорее ожидаемой постоянной скоростью передачи данных. Скорость передачи носителя обычно определяется ее минимальной и максимальной величинами, хотя многие компании, занимающиеся производством жестких дисков, указывают только максимальное значение скорости.

Наличие минимального и максимального значений скорости передачи носителя связано с использованием в современных накопителях так называемой зонной записи данных. В этом случае количество секторов, приходящихся на каждую дорожку внутренних цилиндров, меньше, чем в наружных. Как правило, жесткий диск разделен на 16 или более зон, причем количество секторов на каждой дорожке (а следовательно, скорость передачи данных) во внутренних зонах примерно вдвое меньше, чем во внешних. Скорость вращения жесткого диска практически постоянна, поэтому скорость считывания данных из внешних цилиндров примерно вдвое выше скорости считывания из внутренних.

Существует определенное различие между формальной и фактической скоростями передачи данных. Формальная скорость определяет, насколько быстро биты (единицы емкости памяти) могут быть считаны с поверхности жесткого диска. Далеко не все биты являются битами данных (это может быть промежуток между секторами или идентификаторы битов). Кроме того, следует учитывать время, затрачиваемое при поиске данных на перемещение головок с дорожки на дорожку. Таким образом, фактическая скорость передачи данных представляет собой реальную скорость считывания данных с диска или их записи на диск.

Учтите, что большинство производителей указывают только фактическую скорость, которая, как показывают несложные вычисления, составляет примерно три четверти формальной скорости передачи данных. Это связано с тем, что пользовательские данные на каждой дорожке составляют примерно три четверти всех имеющихся данных, определенная часть которых используется управляющими модулями или представляет собой код коррекции ошибок (ЕСС), идентификатор (ID) и другие служебные данные.

Рассмотрим в качестве примера дисковод Hitachi Deskstar T7K500, который на сегодняшний день является одним из самых быстрых накопителей SATA. Его основные параметры таковы: скорость вращения — 7200 об/мин и полная поддержка скорости передачи данных интерфейса SATA-300 (пропускная способность интерфейса между контроллером и системной платой — 300 Мбайт/с). Следует заметить, что фактическая скорость передачи данных гораздо ниже (см. таблицу ниже).

Как видите, реальная скорость передачи носителя колеблется в пределах от 88,47 до 44,24 Мбайт/с, что составляет в среднем 66,36 Мбайт/с, т.е. менее четверти от скорости передачи интерфейса SATA-300. Смею вас заверить, что вы не будете разочарованы, приобретая дисковод со скоростью передачи данных, равной 66,36 Мбайт/с. Фактически этот накопитель является одним из самых быстрых дисководов SATA на современном рынке.

Меня часто спрашивают о возможности модификации интерфейса ATA. Во многих компьютерах используются системные платы, поддерживающие только режимы ATA-100 (Ultra DMA Mode 5) и SATA-150 (1,5 Гбит/с) и не поддерживающие более быстрые спецификации. Зная фактические скорости передачи носителей большинства дисководов, вы поймете, почему я не рекомендую устанавливать в таких системах отдельные хост-адаптеры ATA-100 или ATA-133 (за исключением, конечно, тех случаев, когда необходимо подсоединить несколько дополнительных жестких дисков). Если говорить о повышении эффективности, то подобная модификация не даст никакого практического результата. Это связано с тем, что средняя скорость передачи данных используемых дисководов ниже скорости интерфейса ATA-66, не говоря уже об интерфейсах ATA-133, SATA-150 и SATA-300.

Существует два основных фактора, непосредственно влияющих на скорость передачи данных: скорость вращения диска и плотность линейной записи, или количество секторов на дорожке. Например, при равном количестве секторов на дорожке скорость передачи данных будет выше у дисковода, имеющего большую скорость вращения. Аналогично при равной скорости вращения накопитель с большей плотностью записи будет иметь большую скорость передачи. При сравнении эффективности накопителей следует учитывать оба фактора.

Как следует из приведенного примера, скорость передачи интерфейса никакого значения не имеет. Поэтому, если вы подумываете о приобретении новой системной платы или дополнительной платы хост-адаптера, пытаясь таким образом повысить производительность дисковода, то лучше потратьте деньги на что-нибудь другое. Повышение производительности интерфейса, используемого для передачи данных из буфера контроллера дисковода в системную плату, также не принесет ожидаемого результата. Объем буфера подобного типа составляет в среднем 4 Мбайт; установка диска с буфером даже емкостью 16 Мбайт даст небольшой выигрыш только приложениям, потребляющим с диска повторяющиеся данные. Совсем недавно были выпущены диски с флэш-буферами, названные гибридными дисками, которые поддерживают кэш SuperFetch в системе Windows Vista. Однако ввиду относительно низкого быстродействия флэш-памяти эта технология в основном предназначена для использования в ноутбуках, где способна продлить жизнь аккумуляторной батарее и, может быть, немного повысить производительность.

При прочих равных условиях жесткий диск, вращающийся с более высокой частотой, имеет более высокую скорость передачи данных, которая не зависит от скорости передачи интерфейса. К сожалению, параметры накопителей совпадают довольно редко, поэтому для получения более объективной информации следует обратиться к характеристикам дисковода, указанным в спецификации или техническом руководстве.

Не следует сравнивать накопители по какому-нибудь одному параметру, скажем, по скорости передачи данных интерфейса или частоте вращения жесткого диска, так как эти сведения могут оказаться обманчивыми. Быстродействие интерфейса не играет практически никакой роли, но, несмотря на то что скорость вращения является более важным параметром, существуют накопители, скорость передачи данных которых ниже скорости передачи данных более медленных устройств. Формальное сравнение технических характеристик ничего не дает. При выборе жестких дисков не забывайте, что скорость передачи данных является, вероятно, наиболее важным параметром, на который следует обращать внимание: чем выше скорость, тем лучше.

Для получения сведений о скоростях передачи конкретного дисковода обратитесь к спецификации или документации/руководству, прилагаемому к накопителю. Обычно необходимую документацию можно загрузить с сайта изготовителя. В ней часто указываются максимальное и минимальное количества секторов на дорожке. Эти величины, а также скорость вращения жесткого диска могут быть использованы для вычисления фактической скорости передачи данных. Для этого необходимо определить точное количество физических секторов, приходящихся на каждую дорожку внешней и внутренней зон. Следует учесть, что конфигурация многих накопителей поддерживает трансляцию секторов, т.е. количество секторов на дорожке, сообщенное BIOS, имеет мало общего с фактическими характеристиками дисковода. Для вычислений лучше подходят не параметры, сообщенные BIOS, а фактические физические параметры жесткого диска.

Зная количество секторов на дорожке (SPT) и скорость вращения жесткого диска, можно без труда определить фактическую скорость передачи носителя (MTR), выраженную в мегабайтах в секунду. Для этого необходимо воспользоваться следующей формулой:

MTR = SPT×512×RPM/60/1000000.

Здесь SPT (Sector Per Track) — количество секторов на дорожке, 512 — количество байтов данных в каждом секторе, RPM (Rotations Per Minute) — частота вращения дисков (оборотов в минуту), 60 — количество секунд в минуте.

Например, накопитель Hitachi Deskstar T7K500, скорость вращения которого равна 7200 об/мин, содержит в среднем 1080 секторов на дорожке. Средняя скорость передачи носителя для данного накопителя определяется следующим образом:

688×512×(7200/60)/1000000 = 42,27 Мбайт/с.

С помощью этой формулы можно вычислить реальную скорость передачи данных любого жесткого диска. Для этого достаточно знать скорость вращения и среднее количество секторов на дорожке.

Производительность жесткого диска

Производительность дисковой системы зависит от быстродействия кинематики жесткого диска. Механические движущиеся детали пока остаются самым медленным звеном в цепи передачи данных от магнитной поверхности диска в оперативную память компьютера. Наиболее длительными фазами в операциях чтения/записи данных являются:

  • Поиск дорожки и считывание нескольких сервометок для точного позиционирования магнитной головки на дорожке, содержащей требуемый сектор.
  • Ожидание поворота диска на угол, необходимый для доступа к сектору идентифицированной дорожки (среднестатистически — половина оборота магнитного диска).

Скоростные характеристики жесткого диска обычно определяется двумя параметрами:

  • Среднее время доступа (результат деления времени, потребовавшегося для серии чтений случайного сектора, на количество считанных секторов).
  • Средняя скорость чтения (количество секторов, последовательно считанных с поверхности магнитного диска за определенный промежуток времени).

Однако часто используются и дополнительные параметры, позволяющие более точно определить производительность дисковой системы в целом:

  • Буферизированная скорость чтения (скорость обмена информацией между контроллером материнской платы и контроллером жесткого диска).
  • Устойчивая скорость чтения (наиболее часто повторяющаяся скорость при последовательном чтении одинаковых блоков информации).

Повышение скорости перемещения магнитных головок ограничивается инерционностью достаточно массивной системы позиционирования и разрушительной вибрацией, возникающей при быстрых хаотичных (несбалансированных) возвратно-поступательных движениях механических компонентов жесткого диска. Поэтому в эволюции жестких дисков основным путем увеличения производительности стало увеличение скорости вращения магнитного диска, что уменьшает время ожидания сектора и увеличивает скорость линейного чтения. Скорость линейного чтения увеличивается и при повышении плотности записи и удаления дорожки от центра вращения магнитного диска. Использование реализованной в жестких дисках технологии управления акустическим шумом (AAM) позволяет управлять скоростью позиционирования магнитных головок, т.е. регулировать среднее время доступа.

Переключение на другую дорожку в пределах одного цилиндра занимает в среднем порядка одной миллисекунды. Это время складывается из ничтожно малого времени переключения головок, производящегося электроникой жесткого диска, и времени позиционирования головки. Дорожки в цилиндре в силу погрешностей изготовления находятся не строго друг под другом, а с некоторым разбросом. Для того, чтобы установить головку точно на дорожку, требуется считать определенное количество сервометок, а на это уходит дополнительное время. Однако за миллисекунду шпиндель накопителя с частотой вращения 7200 об/мин успевает повернуться почти на одну восьмую оборота. Поэтому первый сектор следующей дорожки в цилиндре смещен относительно предыдущей примерно на 45 градусов, что позволяет избежать «холостого» оборота магнитного диска.

Переход к соседнему цилиндру также требует времени (типовое значение 2-4 мс). С учетом этого первый сектор первой дорожки следующего цилиндра сдвинут относительно последнего сектора последней дорожки предыдущего цилиндра. Это позволяет снизить потери времени на ожидание того момента, когда нужный сектор окажется под головкой в режиме непрерывного чтения файлов. Наиболее эффективным с точки зрения скорости чтения является линейное расположение секторов, принадлежащих одному файлу, поэтому необходимо периодически делать дефрагментацию файловой системы, чтобы полностью реализовать заложенный в накопителе потенциал.

Читать еще:  Как выбрать внешний жесткий диск
Ссылка на основную публикацию
Adblock
detector