Сортировка вставками паскаль
Сортировка вставками паскаль
Алгоритмы сортировки массивов
Сортировка данных это процесс изменения порядка расположения элементов в некоторых упорядоченных структурах данных таким образом, чтобы обеспечить возрастание или убывание числового значения элемента данных или определенного числового параметра, связанного с каждым элементом данных (ключа), при переходе от предыдущего элемента к последующему.
Для переменных символьного типа понятия «возрастание» и «убывание» относятся к значениям машинного кода, используемого для представления символов в памяти компьютера. Так как все буквенные символы располагаются в таблице кодов по алфавиту, то сортировка слов текста всегда приводит к их упорядочению в алфавитной последовательности.
Существует много алгоритмов, обеспечивающих решение задачи сортировки. Наиболее известными являются следующие:
— метод сортировки обменами («пузырьковая» сортировка);
— метод сортировки вставками;
— метод сортировки выбором элемента;
Алгоритмы и программы сортировки
Алгоритм сортировки обменами («пузырьковая» сортировка)
Метод «пузырька» один из самых простых методов внутренней сортировки. Суть алгоритма состоит в последовательном просмотре массива от конца к началу или от начала к концу и сравнении каждой пары элементов между собой. При этом «неправильное» расположение элементов устраняется путем их перестановки. Процесс просмотра и сравнения элементов повторяется до просмотра всего массива. При сортировке по возрастанию «легкие» элементы с меньшим значением как бы «всплывают» к началу массива подобно тому, как это делают пузырьки воздуха в стакане с водой — отсюда и происходит популярное название алгоритма.
Procedure Puzirek;
Var i, j: Integer;
y:Integer;
Begin
For i := 2 to n do
For j := n downto i do
If X[j-1] > X[j] then begin y:=X[j-1];
X[j-1]:=X[j];
X[j]:=y
end;
End;
Алгоритм сортировки вставками
Метод сортировки вставками заключается в переборе всех элементов массива от первого до последнего и вставке каждого очередного элемента на место среди предшествующих ему элементов, упорядоченных ранее таким же способом. Поскольку процесс начинается с самого первого элемента, то последовательность упорядоченных элементов постепенно растет до тех пор, пока самый последний элемент не встанет на «свое» место. Освобождение места для вставки элемента осуществляется путем соответствующего сдвига группы элементов.
Procedure Vstavka;
Var Z, Y, i, j: Integer;
Begin
For i := 2 to n do
For j := 1 to i-1 do
If X[j] > X[i] then
begin
Z := X[i];
For Y := i downto j+1 do X[Y] := X[Y-1];
X[j] := Z
end
End;
Алгоритм сортировки выбором элемента
В массиве необходимо найти элемент с минимальным значением и поменять его местами с первым элементом массива (для сортировки по убыванию — это необходимо сделать с максимальным элементом). После этого элемент с минимальным значением отыскивается среди всех элементов, кроме первого, и меняется значениями со вторым элементом массива и т.д. В результате все элементы выстраиваются по порядку.
Procedure Vibor;
Var r, i, j: Integer;
Begin
For i := 1 to n-1 do
begin
r := i;
For j := i+1 to n do If a[r] > a[j] then r := j;
Y:=a[r]; a[r]:=a[i]; a[i]:=Y;
end
End;
12. Методы сортировки массивов
Сортировкой или упорядочением массива называется расположение его элементов по возрастанию (или убыванию). Если не все элементы различны, то надо говорить о неубывающем (или невозрастающем) порядке.
- количество шагов алгоритма, необходимых для упорядочения;
- количество сравнений элементов;
- количество перестановок, выполняемых при сортировке.
Мы рассмотрим только три простейшие схемы сортировки.
Метод «пузырька»
По-видимому, самым простым методом сортировки является так называемый метод » пузырька «. Чтобы уяснить его идею, представьте , что массив (таблица) расположен вертикально. Элементы с большим значением всплывают вверх наподобие больших пузырьков. При первом проходе вдоль массива, начиная проход «снизу», берется первый элемент и поочередно сравнивается с последующими. При этом:
В результате наибольший элемент оказывается в самом верху массива.
Во время второго прохода вдоль массива находится второй по величине элемент, который помещается под элементом, найденным при первом проходе, т.е на вторую сверху позицию, и т.д.
Заметим, что при втором и последующих проходах, нет необходимости рассматривать ранее «всплывшие» элементы, т.к. они заведомо больше оставшихся. Другими словами, во время j -го прохода не проверяются элементы, стоящие на позициях выше j .
Теперь можно привести текст программы упорядочения массива M[1..N] :
begin for j :=1 to N -1 do for i :=1 to N — j do if M[ i ] > M[ i +1] then swap (M[ i ],M[ i +1]) end; |
Стандартная процедура swap будет использоваться и в остальных алгоритмах сортировки для перестановки элементов (их тип мы уточнять не будем) местами:
procedure swap (var x,y: . );
var t: . ;
begin
t := x;
x := y;
y := t
end;
Заметим, что если массив M глобальный, то процедура могла бы содержать только аргументы (а не результаты). Кроме того, учитывая специфику ее применения в данном алгоритме, можно свести число парметров к одному (какому?), а не двум.
Применение метода «пузырька» можно проследить здесь.
Сортировка вставками
Второй метод называется метод вставок ., т.к. на j -ом этапе мы «вставляем» j -ый элемент M[j] в нужную позицию среди элементов M[1] , M[2] ,. . ., M[j-1] , которые уже упорядочены. После этой вставки первые j элементов массива M будут упорядочены.
Сказанное можно записать следующим образом:
Чтобы сделать процесс перемещения элемента M[j] , более простым, полезно воспользоваться барьером: ввести «фиктивный» элемент M[0] , чье значение будет заведомо меньше значения любого из «реальных»элементов массива (как это можно сделать?). Мы обозначим это значение через оо.
Если барьер не использовать, то перед вставкой M[j] , в позицию i-1 надо проверить, не будет ли i=1 . Если нет, тогда сравнить M[j] ( который в этот момент будет находиться в позиции i ) с элементом M[i-1].
Описанный алгоритм имеет следующий вид:
begin M[0] := -oo; for j :=2 to N do begin i := j ; while M[ i ] M[ i — 1] do begin swap (M[ i ],M[ i -1]); i := i -1 end end end; |
Процедура swap нам уже встречалась.
Сортировка посредством выбора
Идея сортировки с помощью выбора не сложнее двух предыдущих. На j -ом этапе выбирается элемент наименьший среди M[j] , M[j+1] ,. . ., M[N] (см. процедуру FindMin ) и меняется местами с элементом M[j] . В результате после j -го этапа все элементы M[j] , M[j+1] ,. . ., M[N] будут упорядочены.
Сказанное можно описать следующим образом:
нц для j от 1 до N-1
выбрать среди M[j] ,. . ., M[N] наименьший элемент и
поменять его местами с M[j]
кц
begin for j :=1 to N -1 do begin FindMin ( j , i ); swap (M[ j ],M[ i ]) end end; |
В программе, как уже было сказано, используется процедура FindMin , вычисляющая индекс lowindex элемента, наименьшего среди элементов массива с индексами не меньше, чем startindex :
procedure FindMin (start index : integer; var lowindex : integer );
var lowelem: . ;
u: integer;
begin
lowindex := start index ;
lowelem := M[startindex];
for u:= start index +1 to N do
if M[u] lowelem then
begin
lowelem := M[u];
lowindex := u
end
end;
Оценивая эффективность применения , учтите что в демонстрации сортировки выбором отсутствует пошаговое выполнение этой процедуры.
Сортировка вставками
Если можно, то с объяснениями..Помогите решить: Требуется отсортировать массив по неубыванию методом «вставок».
Входные данные
В первой строке вводится одно натуральное число, не превосходящее 1000 – размер массива. Во второй строке задаются N чисел – элементы массива (целые числа, не превосходящие по модулю 1000).
Выходные данные
Вывести получившийся массив.
Примеры
входные данные
5
5 4 3 2 1
выходные данные
1 2 3 4 5
Сортировка прямыми вставками с барьером
Задача почти такая же как и 1я условие: 1.20. Дана матрица. Упорядочить элементы столбцов матрицы.
Сортировка простыми вставками: изменить порядок сортировки
вот алгоритм в общем виде сортировка простыми вставками как сделать так чтобы он.
Вычисление выражения (с ассемблерными вставками)
Пользуясь ассемблерными вставками в Pascal написать программу вычисления выражения. Выдаёт.
Решение
Pascal | ||||||||
02.01.2016, 20:15 [ТС] | 3 | |||||||
Cyborg Drone, есть у меня парочка книг, может можете посоветовать что-то конкретно? Или интернет ресурс какой-то.. Добавлено через 1 минут
|